If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+150t+10=0
a = -16; b = 150; c = +10;
Δ = b2-4ac
Δ = 1502-4·(-16)·10
Δ = 23140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{23140}=\sqrt{4*5785}=\sqrt{4}*\sqrt{5785}=2\sqrt{5785}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(150)-2\sqrt{5785}}{2*-16}=\frac{-150-2\sqrt{5785}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(150)+2\sqrt{5785}}{2*-16}=\frac{-150+2\sqrt{5785}}{-32} $
| 10x/100=168 | | (3x)2.X=8 | | 6x−20=-14 | | m+78=6 | | 7x−8=-1 | | 6(x+1)=6/7(7x-14) | | 3x+12=8-x | | 5b^2-46b-40=0 | | 17=2n-5 | | 4.3=7.8+x | | 4.3=8.8+x | | 6(x-1)-2(x-3)=16 | | 7x-5(x-2)=4-2(x-5) | | x=-6,x=-1 | | 12(5-m)=7(1+3) | | 11y+4=6y-7 | | X^2+8x+12=120 | | -13+y=55 | | 4x^2-17x+34=4x+7 | | X^2+7x-18=8x+2 | | 11x+5=5x-7 | | 2t-1=5-t | | 2x-14=x-14 | | 2(3x-4)=-5x+36 | | 3x=-3.5x+39 | | Y=7x-26,x=4x-11 | | 3x+0=3.5x+39 | | x+3=^5x+11 | | 40=9w-4w | | |k+7/3|=|k-6| | | 4u-2u=12 | | 5+2/3/12=x |